6 Practice!

Example 8. Find the scalar projection and vector projection of $\vec{b} = \langle 1, 1, 2 \rangle$ onto $\vec{a} = \langle -2, 3, 1 \rangle$.

$$Comp_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|} = \frac{-2+3+2}{\sqrt{4+9+1}} = \frac{3}{\sqrt{14}}$$

$$Proj_{\vec{a}}\vec{b} = (Comp_{\vec{a}}\vec{b})\frac{\vec{a}}{|\vec{a}|} = \frac{3}{\sqrt{14}}\frac{\langle -2,3,1\rangle}{\sqrt{14}} = \frac{3}{14}\langle -2,3,1\rangle = \langle -\frac{b}{14},\frac{9}{14},\frac{3}{14}\rangle$$

$$\vec{a} = \frac{3}{\sqrt{14}}\frac{\langle -2,3,1\rangle}{\sqrt{14}} = \frac{3}{14}\langle -2,3,1\rangle = \langle -\frac{b}{14},\frac{9}{14},\frac{3}{14}\rangle$$

Example 9. Find a unit vector that is orthogonal to both $\langle 2, 0, -1 \rangle$ and $\langle 0, 1, -1 \rangle$.

Let
$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$
 be such a unit vector.
Then \vec{u} must satisfy:
 $\vec{a} \cdot \vec{u} = 0 \Rightarrow \begin{cases} du_1 - u_3 = 0 \\ u_2 - u_3 = 0 \end{cases}$
 $u_1^2 + u_2^2 + u_3^2 = 1 \end{cases}$
 $ightarrow \frac{1}{2} = 1 \Rightarrow \frac{1}{4}u_3^2 + u_3^2 = 1 \Rightarrow \frac{1}{4}u_3^2 = \frac{$

Example 10. Determine whether the given vectors are orthogonal, parallel, or neither:

a.
$$\vec{a} = (4, 5, -2), \vec{b} = (3, -1, 5)$$

b. $\vec{u} = 9\vec{i} - 6\vec{j} + 3\vec{k}, \vec{v} = -6\vec{i} + 4\vec{j} - 2\vec{k}$
a. \vec{a} and \vec{b} are not parallel,
Since they are not scalar multiples
of each other
 $\vec{a} \cdot \vec{b} = 12 - 5 - 10 = -3$
 $= 3$ \vec{a} and \vec{b} are not orthogonal
 $\vec{b} \cdot \vec{u}$ and \vec{v} are parallel,
Since $\vec{u} = -\frac{3}{2}\vec{v}$
 $\vec{u} \cdot \vec{v}$ therefore are not
orthogonal
 $\vec{b} \cdot \vec{u}$ and \vec{v} are parallel,
Since $\vec{u} = -\frac{3}{2}\vec{v}$